Rational Group Actions on Affine Pi-algebras

نویسنده

  • MARTIN LORENZ
چکیده

Let R be an affine PI-algebra over an algebraically closed field k and let G be an affine algebraic k-group that acts rationally by algebra automorphisms on R. For R prime and G a torus, we show that R has only finitely many G-prime ideals if and only if the action of G on the center of R is multiplicity free. This extends a standard result on affine algebraic G-varieties. Under suitable hypotheses on R and G, we also prove a PI-version of a well-known result on spherical varieties and a version of Schelter’s catenarity theorem for G-primes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Affine Rings

Various topics on affine rings are considered, such as the relationship between Gelfand-Kirillov dimension and Krull dimension, and when a "locally affine" algebra is affine. The dimension result is applied to study prime ideals in fixed rings of finite groups, and in identity components of group-graded rings. 0. Introduction. We study affine rings (i.e., rings finitely generated as algebras ov...

متن کامل

Double Affine Hecke Algebras for the Spin Symmetric Group

We introduce a new class (in two versions, Au and Bu) of rational double affine Hecke algebras (DaHa) associated to the spin symmetric group. We establish the basic properties of the algebras, such as PBW and Dunkl representation, and connections to Nazarov’s degenerate affine Hecke algebra and to a new degenerate affine Hecke algebra introduced here. We formulate a precise connection between t...

متن کامل

Group Actions and Rational Ideals

We develop the theory of rational ideals for arbitrary associative algebras R without assuming the standard finiteness conditions, noetherianness or the Goldie property. The Amitsur-Martindale ring of quotients replaces the classical ring of quotients which underlies the previous definition of rational ideals but is not available in a general setting. Our main result concerns rational actions o...

متن کامل

Affine and degenerate affine BMW algebras: Actions on tensor space

The affine and degenerate affine Birman-Murakami-Wenzl (BMW) algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic quantum groups and Lie algebras, respectively. Cyclotomic BMW algebras, affine and cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper we explain how the affine and degenerate affine BMW algebras are tantalizer...

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012